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Exact particular solutions of nonlinear equations defining unsteady transonic 

flows of gas are derived. These solutions are used for analyzing unstable flows 

in Lava1 nozzles with local supersonic zones. 
Local supersonic zones in stationary flows were investigated with the use ofthe 

simplified equations for transonic flows of gas in p] in plane nozzles and in p] in noz- 
zles of circular cross section. These solutions were then extended in [3] to three -dimen - 

sional flows in Lava1 nozzles. Since the investigation of variation of local super- 
sonic zones with time is complicated by the nonlinearity of the equation for un- 

stable transonic flows, hence even particular examples are of interest, A solution 

of this equation for an unsteady flow of the Taylor kind in a nozzle with two 

planes of symmetry was indicated in [3]. Similar solutions were later considered 

in [4] for unstable flows in plane nozzles. It was established that all of the above 
solutions can be extended. One of such generalized solutions of the transonic 

equation defining an unsteady flow of the Taylor kind in plane and axisymmetric 

Lava1 nozzles is presented in [5]. Here this solution is used for analyzing the 
variation of local supersonic zones with time (their onset, development, and join- 

ing at the nozzle axis, or the inverse process) for two classes of self-similar solu- 

tions. 

1. 1) “Slow” unsteady transonic flows of perfect gas are defined by the system of 

equations ’ 

2u- -1m uu, - vv - w, Lm 0, U,!, = v,, u; = w,, v, - w,J (1.1) 

where u, v and IX are projections of the velocity vector on the axes of a Cartesian sys- 
tem of coordinates X, y, z, and r is the time. The velocity potential is defined by the 

equation 
(1.2) 

Differentiation of Eq. (1.2) with respect to x yields the equation IL = (pX. The solution 
of this equation which defines a flow with local supersonic zones in a Lava1 nozzle (for 
simplicity a nozzle with two mutually perpendicular planes of symmetry are considered 

here) is Of the form u = u (El z) + a, (t) y? -1. I& ($22, z .= ,n (r)E + (1.3) 

‘1 (t) + Cl (t) y2 -t c, (T) z2 

The equation for u (E, 7) is readily derived [5]. Since our aim is the investigationof 

variation of local supersonic zones (LSZ) with time, hence for simplicity only plane and 
axisymmetric flows will be considered. Extension of results obtained below to the three- 

dimensional case (1.3) is not difficult. 
2) The system of Eqs. (1.1) admits a solution for the form 
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u = p-$J * (5*, Y*v 0 + 2h’ (4, u = N%* (Lr*, y*, t) + n 4h”(r)y (1.4) 

X 
8 

= r--h@) 
z” t 

y, Z yr-‘l&+l) t t=Ina 

For U* and u* we seek solutions of the form (1.3) 

u* = mu (5, t> + 2r: (2c - 1) y*s, z* f r?2E + “y*s (1.5; 

u* = 2cm[2(2c - l)E - U (E, t)] y* + 8c(cAm1)J~-- i) y,3 
I 

where m, c and n are arbitrary constants, h ( z is an arbitrary function. and w = 0 ) 

for plane and o = 1 for axisymmetric flows. For function U ($, t) we obtain the 

equation 2u, + (u - 273 u, _t 2 (72 - 1 + (w + 1) cl u - 4c (2c -(l,ti) 
$1 (a + 115 = 0 

3) Let us first consider self-similar solutions for U, = 0 , when for U we have 
an ordinary differential equation containing two arbitrary parameters c and n. The be- 
havior of integral curves depends in this case on h, and Aa 

&,a = 41,z - 27b q1,2 = 1 - (0 + 1) c =g 11- (w + 1) c(6 - (1.7) 

8c) -+ (w -t_ I)2 Z-I’!, 

If a, and A2 are different but of the same sign, we have a nodal point at the coordinate 

origin of plane (u, g) (Fig. 1, a) ; if the signs are different, there is a saddle point (Fig. 

Fig. 1 

J, b) ; if A1 = ha + 0, we have a degenerate node, and if one of the A, (or both) are 
zeros, solutions in the plane I U, g) are represented by parallel straight lines. Note that 

curves CJ = U (E, t) define velocity (pressure) distribution u = u (s, t) along the 
axis Y = 0. Solutions represented by straight lines passing through the singular point 
(shown by dash lines) are of the form 



u -z 41E, u =- q2E (1.8) 

In the plane case (a == 0) q1 =- 2( 1 -2~) and qz = 2c. 
In the case of a nodal point the curves are tangent to the straight line u = qlE when 

1 311 1 < / h /and to the line u r q&, when j h, / > 1 x2 1. If Ai # &, the solu- 
tion of Eq. (1.6) is of the form 

(II - qiE)-“l (U - qag)hz =c A = const 

or in the parametric form 
(1.9) 

For h, = ?L, = ho (& = q2 = q) the solution is 

u= *riln9+71(QM% ts=-&7ln71+Q (1.11) 

In formulas (1.9) - (1.11) A and B are arbitrary constants. In the parametric form 

Y = Y(%t r), x = .z (L -r ) with c # iI2 and c # 0 the equation of the sonic line 
for (1.5) is of the form 

When c = 0 or c = l/a the sonic line is defined by E = &, (t). In what follows we 

consider the case of w = 0 (the analysis in the axisymmetric case is similar) and in 
the beginning set k’(r) = 0. Then for (1.10) the equation of the sonic line assumes the 

form 
&ls 1 

Y2 = 2c(l-2c) c 
?- rl + 2 (2 - 2~) Bv] = 2c ;::;43 u (rl) S-1 

(1.13) 

We assume that m == 1 > 0 (for m ( 0 the analysis is similar). The first formula 

of (1.13) clearly implies that it is possible to construct the sonic line for 0 ( c ( I/, 

if U > 0, and for c < 0 or c > l/, if U < 0. The behavior of integral curves in 
Fig. 1 with allowance for the first formula of (1.5) shows that curves LIA and C, OC, 

inFig.l,bcandefinefor c<O or C>‘/ 2 flows with LSZ in lava1 nozzles. For- 

mulas (1.13) show the variation of ISZ with time. 
Taking into consideration that in the transonic approximation the equations of nozzle 

walls (which can be easily presented in a parametric form) are of the form 

Y=Yo$_Ef(Gr), $v(Y,J,rL Y0 = con&, E< 1 (1.14) 

we conclude on the basis of (1.13) that for ?z > -1 the LSZ which at the initial inst- 
ant occupy a part of the nozzle throat vanish after a certain time, and the stream be- 
comes everywhere subsonic, i. e. solutions for n > -4 define flows with vanishing 
LSZ. An example of such flow (for n x 2, c = -3 and B > 0) is presented quali- 
tatively in Fig. 2, a. On the other hand, when n < - 1, the development of LSZ is 
observed (an example of this is shown in Fig. 2, b for n =~= -3/2, c = 4 and B < 0). 
It is evident from the second formula of (1.13) that with increasing time the LSZ widens 
for n > 0 and narrows for a < (I . 
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Note that it is possible to substitute in all formulas (z f .tO) for 7, where 0 < z < 
co and ‘c,, > 0, According to (1.13) flows with LSZ which merge at the nozzle axis 
for r + 00 and n ( -1 take place for 3L’ (z) = 0, When A’ (z) # 0, then for 

the same values of c (c < 0 or c > l/s) the LSZ merge for ‘t = zi at the nozzle axis 

and the supersonic zone subsequently occupies a whole segment of the axis (or the inverse 

process takes place with increasing time). Such LSZ are readily constructed by formulas 

(1.12) and (1.13). Note that solutions defined by curves with closed sections U > 0 

Fig. 2 

a 
b 

X 5 

Fig. 3 

along the axis y = 0 may describe flows with LSZ close to the profile (Fig. 3, a). 

Examples of solutions which have such sections are given in Fig. 1, a by curves BOb 
and, if 3L’ (r) > 0, by curves AA and CIOC, in Fig. 1, b. In this case it follows from 
(1.13) that for such flows 0 < c < ‘/a. However for such c the solution for flows of 
this kind is defective (contains regions of ambiguity and nonexistence of solutions). The 

pattern of flow in proximity of the profile for c = lip, IZ = 5/g, B > 0 and y, = 3.35 
is shown qualitatively in Figs. 3, a. The integral curve BB,C in Fig. 1. a (& < &, 
u’ (&) = co) corresponds to this flow. It is not possible to construct the flow beyond 
E = Ec using a solution of the class of (1.5). It is apparently possible to extend that 

solution beyond E - Ec by using a solution more general than (1.5) and (1.9) and 

admitted by system (1. l), which is of the form 

U* = U, (5) + u, (8 Y*Y 5* = xcl (0 + xs (0 Y*2 (1.15) 

v* = vi (E) Y, + vs (E) Y*3 

4) Let us consider flows with L3Z and compression shocks. Conditions at the shock 
front are of the form 

2 g -t ($)" = + (u(l) _I- u(2)), u(1) + u&. = u!Z)$. u(2) 25 
al/ ay 

(1.16) 
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where the superscripts relate to flows on opposite sides of the shock. Let us assume that 

the solution at one side of the shock is of the form (1.5) and at the other of the form 
(1.15) (the case of U, = 0 is considered), Then, satisfying conditions (1.16) at the 

compression shock 5 = &, = Con& and z = gOan -+ (c / r)ys -+- il fr), we obtain 

v, (EJ = 4c (2c - 1)&J - 2cu, (E&J, v3 (Eo) = B/BC cc - 1) (2c - 1) 
Conditions at the shock front E = E0 (z) in the case when coefficients in (1.5) and 

(1.15) also depend on z are analogous. The shock intensity is defined according to 

@*17) by the exP=2ion u(l, _ u(2) = 2u (go) _ 4& 

If the solution u~t~arn of the shock wave is taken in the form (I, 5) and (1. lo), accord- 

ing to (1.18) it is necessary to supplement (1.17) by the following condition : 

u G.0) > 2& (1.19) 

which shows that the shock is a compression one. If the solution (1.5) and (1.10) is taken 

downstream of the shock, the inequali~ sign must be reversed, 
Analysis of condition (1.17) and of the behavior of integral curves shows that it is pas- 

sible to construct a great number of flows of various kinds with compression shocks. Let 

us examine some of these, The flow with LSZ in the proximity of the profile, which ends 

in a compression shock (C = I/*, n = 5/, and B > 0) is shown in Fig. 3, b. Upstream 

of the shock E = 0 the solution is represented by curve BB, and downstream of it by 
curve B,B (Fig. 1, a). Thus the three -valued region is replaced by a compression shock. 

However, in accordance with (1.18). the intensity of the compression shock is constant. 

does not decrease with increasing y, and cannot be extended into region .I!? which lies 
above point 0 of intersection of the sonic line with the shock front, From the physical 

point of view the considered class of solutions is evidently unsuitable for defining flows 

near a profile. 
Flows with LSZ bounded by a compression shock E = go are readily constructed for 

a, ~1: 0 or 3L2 = 0. One of such possible flows is of the form shown in Fig. 3, b. Solu- 
tions U = Q& (represented by straight lines C,C, (k = 1, 2)) can be successfully 
used for constructing flows with shock waves. If, for example, we take upstream of the 

shock 5 = &, > 0 one of these solutions and downstream of it the other, we obtain a 
flow with IS2 in a Lava1 nozzle ending in a shock wave. Satisfying the first of conditions 

(X.17) (the remaining are automati~lly satisfied), we obtain c = ‘i--&z. In addition, 
by satisfying condition (1.19). specifying that q1 and fja must be of different signs (i.e. 
that the indicated straight lines must lie in different quarters), and selecting &, > 0, 
we come to the conclusion that, if upstream of the shock we take the solution U = (Ilk, 
then c ( 0, while with the solution u = q2g we have c > t/s. If &, is fairly small, 
the flow downstream of the shock can be supersonic, which with increasing distance from 
the shock becomes subsonic. If go is reasonably great, the flow is subsonic immediately 
downstream of the shock. When &, = 0 the shock vanishes and the cnrve E,, L 0 is 
then a characteristic along which the two solutions C, =- qlg and u :- q2g merge. In 
Fig. 1, b such solution is represented by the broken line c, (3i?i. It represents a shock- 
free flow in a nozzle with the L-32 merging at one point of the nozzle axis. Flows in 
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which supersonic zones downstream of the shock lie close to the walls without reaching 

the nozzle axis at any point, while in the proximity of the axis the flow downstream of 
the shock is subsonic. Such nozzles were investigated in [6] in the stationary case.Such 

flow can be readily constructed with the use of one of the solutions U = qkE, upstream 

of the shock and the general solution (1.9) downstream of it. 

5) Let us now consider solution (1.5) for the general case of U = U (I& t). 

Using (1.10) it is easy to obtain the first two integrals of Eq. (L6). which yields for 
A1 # A., the general solution 

F r(v - ql&ht (U - q&)% (U - qlE) exp (-l/~~~~)~ = 0 (L20) 

where P is an arbitrary function of two arguments. Representing solution (1.20) as re- 

solved for the second argument, we obtain it in the form t = t (U, t). Note that here 

Eq. (1.6) is linear with respect to function t (U, E) , In the parametric form conveni- 

ent for computations solution 11.20) is written in the form (1.10) in which B is an ar- 
bitrary function of TI exp (--‘/s?&l. 

If Ai = &- = ho (qr = Qs = 41, the general solution of Eq. (1.6) is of the form 

F II ln(U---qE) --A, (U - q$) exp (- l/.&,t)] = 0 (1.21) 

In parametric form the solution is provided by formulas (1. ll), where B (91 exp (-&-,t/ 
2)) is an arbitrary function. 

2, Let us consider one more class of solntions for the system of Eqs. (1.1). We pass 
in (1.1) to the new variables 

x* = [x - h (.t)le-tnT, ya == ye-nt 

Solution~w~ichdefine flows with ISZ also exist for (2.1). Written in physical varia- 
bles x, 3, r they are of the form 

U == meznr u (El r) + 4c2ys -+- 2h” (z), 5 = n&F -t- qp + 3L (T) (2.2) 

73 = 2cm@~'(‘!&-u)y + * C3YS + -&WY 

Function U satisfies equation 

2U.C + (U - 4n5)& + 2 f2n +- ((b + I) Cl u-8(0 + i)c2E= 0 (2.3) 

bet us first consider the self-similar case of U = U (E) whose solution for h, =/= h, 

is of the form (I, 91, (1. lo), where 

A, = QI; - 4n, q&z = (-0 - 1 t_ p%!P -t_ %Ow + Y>c (2.4) 

The solution for h, --;: 3Ls (c = 0) is also readily derived, Investigation of the be- 
havior of integral curves (and of related kinds of flows) in terms of il, and I”, is exactly 
as in the case of (1.9) (the reasoning is repeated literally), However, unlike in the case 
of (1.5), (1.6) the behavior of curves does not depend on E and n but on the ratio ~15 = 
n/c.For a<---jar a>r/, wehaveanodeatpoint U- g==O andfor 
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- 1 < 01 < ‘1s a saddle, The asymptotes U = q& always lie in different quarters. 

The equation of the sonic line is of the form (we assume m = 1) 

h’(T) 1 
Y2 = - 2c2 

--_--_ 

49 wJ(q), J: = - *+e”$(~)- &U($] (2.5) 

In [4] sonic lines (2.5) were constructed for IZ = 0. Formulas (2.5) provide a clear 
picture of the change of sonic lines with time. They show that for n > 0 (and related 
function h (7)) solutions define the process of LSZ “attenuation” in Lava1 nozzles, and 

for n < 0’ that of their development. 

As in the case of(1.5) it is possible to construct with the use of solution (2.2) the flow 

with compression shocks in Lava1 nozzles. For this the equation of the shock is specified 

in the form 
E = Em z = EOe2nr + cy2 + h (T) (2.6) 

In this case the shock wave shape does not change with time, while for solutions (1.5) 

its shape defined by x = Earn + (C / ~)y’ f h (T)) varies with time. Assuming that 

at one side of the shock the solution is of the form (1.15). (2.1) and at the other of the 

form (2.2), we readily obtain conditions at the shock front, similarly to (1.17). Let us 
consider the particular case when upstream of the shock the solution is of the form(2.2) 

with u- = Ui (E) and downstream of it with U = U, (5). From condition (1.16) at 
the shock front we then obtain the single requirement 

u, (Eo) + u2 (Eo) = f%l 

Stipulation for the shock to be a compression one yields the condition 

u1 (Eo) > 4& 

(2.7) 

Note that for (2.2) the intensity of shock waves is independent of y but varies with time. 
In this class of solutions the construction of the flow with a compression shock in a nozzle 

in accordance with (2.7) is elementary. Such flows may, for instance, be represented by 

curve C,OMA (Fig. 1, b). It is interesting that in this case the flow upstream of the 

compression shock is stable (for h = 0), while downstream of it it changes with time. 
The change in the stream can be readily observed with the use of formulas (2.5) and 

(2.6). We point out that solution (2.2) is a generalization of solutions considered in 
[ 1, 2, 41 which are obtained from (2.2) by setting n = 0. As already noted above, 

solutions (2.2) can be extended to the three-dimensional case 
(2.8) 

U = eznrU (E, r) + a,y2 + a2z2 + 23L’ (T), 5 = Ee271r _I- Cd? + C2z2 + h (Tj 

Thus solution (2.8)yieldsasa particular case for n =--; CI all known solutions of this kind 
[l - 43, for example, solutions for steady flow.. For n = 0 the conditions at the shock 
front and along characteristics represent conditions for steady flows. Note that the more 
general class of solutions (2.1) has the same property when au, / & = au, / dz = 
h =I 0. In the general case of (2.2) when U = U (E, r) by determining the first in- 

tegrals for (2.3), we obtain the general solution for c # 0 (h, # A2) in the form 
(1.20). (2.4) in which ‘t is substituted for t . The general solution for &= A2 (c = 0) 

is readily obtained in a form similar to (1.21). 

3, We conclude with the following remark. Let us consider the system of equations 

Au 
5 

+ G(‘)“x + F(l)u _c j?(Q + (92) _ (J F("' (, 
x 4 II , Ft3)ux + Bv, + Clc,, -i- (3.1) 
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n=o 

where the coefficients A, B, C, G,,‘“) and F,fk) are generally some functions of T. Sys- 
tem (3.1) includes the following particular cases (plane and axisymmetric flows are con- 
sidered) : (a) equations (1. l), (b) equations for transonic vortex flows p], (c) equations 
for transonic flows of ~erni~lly active gas [8], (d) equations for short waves [9], and 
(e) equations of magnetohydrodynamics for transonic and hypercritical flotis [lo]. 

The system of Eqs, (3.1) has a two-parameter class of solutions 

14 ~~ i U, (C, z) Q”, u L-7 ; V, (4, r)$ (3.2) 
k=o k=0 

.z .E 
i 

xk (t, %) qk, Y ‘= Yo (E, T) j- Yl (F;, z) q 

k=O 

For y. = 9 (n = y) we obtain from (3.2) one-parameter solutions which include, as a 
particular case, solutions of the form (1.3). For Y, = 0 (E = g) in (3.2) contains solu- 
tions 

U z 
i ‘k (I;, r) “‘, 1’ -= i V,(?/, z) zk 

k=o k=0 

As an example, we present some particular solutions of equations [8] 

(3.3) 

uu* - vy - + t‘ -+ uu - 0, uV = vX, u -const (3.4) 

An example of solutions of the form (3.2) for Y0 = 0 of system (3.4) is the solution 

u = mU (E) + 4c2y2, s = mE +- cy2 (3*5) 
4C2 

u ~2Crn(4CFi,--ff)!/ r,+,(4c-/-W 

which defines a flow with LSZ in Lava1 nozzles. 
Function U is specified by formu~s (1.9) and (1. lo), where 

The solution for 91 = q2 is readily derived. For a = 0 we obtain a solution of sys- 
tem (1.1) for a chemically active gas, The behavior of integral curves is qualitatively 
represented in Fig. 1, b. The solution of system (3.4) which in the case of a free sonic 
stream of gas flowing past a profile defxnes the flow in the neighborho~ of the intersec- 
tion point of two sonic lines (one of which for o = 0 is specified by y = 0 and for 
o = 1 by r = r$ $= 0) is an example of solutions of the form (3.3). For simplicity we 
set in (3.4) a = 1 and obtain for u the formula 

u = y (2ax + Y3a2y3 _t 4&2 i- c), o=o (3.7) 

u = 5 [2/3x + c + l/g+ (5 - l/z)], E = Inr + 3/2h 0 = f 

In formulas (3.5) - (3.7) a, b, c and m are arbitrary constants. Solutions of the form 
(3.5) and (3.7) can be readily derived also for equations which define vortex flows [7]. 
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Behavior of a transonic stream of gas perturbed by a body of revolution is inves- 

tigated at some distance from that body in the hodograph plane. An asymptotic 
expansion of the Legendre potential is derived. 

The flow of a perfect gas stream, whose velocity at infinity is constant and 
close to the speed of sound, past a slender body of revolution is considered. The 
problem of attenuation of perturbations induced by the body of revolution in the 
transonic stream in the region upstream of compression shocks at some distance 
from the body is analyzed. 

An asymptotic expansion of the velocity potential in the considered region 
was obtained in Cl] in variables of the physical plane of flow. However hodo- 
graph variables proved to be more convenient in a number of problems, since 
the equation of shock wave in these variables becomes determinate. Because 


